Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators
نویسندگان
چکیده
In this paper we deal with thèstrength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according to M. Z. Nashed 15] the ill-posedness of type I if A is not compact, but we have R(A) 6 = R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in generaìless' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in 10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions speciic measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of suucient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملConvergence rates analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators
We investigate convergence rates of Tikhonov regularization for nonlinear ill-posed problems when both the right-hand side and the operator are corrupted by noise. Two models of operator noise are considered, namely uniform noise bounds and point-wise noise bounds. We derive convergence rates for both noise models in Hilbert and in Banach spaces. These results extend existing results where the ...
متن کاملConvergence rates for regularization with sparsity constraints
Tikhonov regularization with p-powers of the weighted `p norms as penalties, with p ∈ (1, 2), have been lately employed in reconstruction of sparse solutions of ill-posed inverse problems. This paper points out convergence rates for such a regularization with respect to the norm of the weighted spaces, by assuming that the solutions satisfy certain smoothness (source) condition. The meaning of ...
متن کاملCompact Linear Operators and Krylov Subspace Methods
This thesis deals with linear ill-posed problems related to compact operators, and iterative Krylov subspace methods for solving discretized versions of these. Linear compact operators in infinite dimensional Hilbert spaces will be investigated and several results on the singular values and eigenvalues for such will be presented. A large subset of linear compact operators consists of integral o...
متن کاملDynamical Systems Method ( Dsm ) and Nonlinear Problems
The dynamical systems method (DSM), for solving operator equations, especially nonlinear and ill-posed, is developed in this paper. Consider an operator equation F (u) = 0 in a Hilbert space H and assume that this equation is solvable. Let us call the problem of solving this equation illposed if the operator F ′(u) is not boundedly invertible, and well-posed otherwise. The DSM for solving linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998